HyperAIHyperAI

Command Palette

Search for a command to run...

径向基函数 Radial Basis Function

Date

3 年前

径向基函数 RBF 是沿径向对称的标量函数,通常定义为空间中任一点 X 到某一中心 Xc 之间距离的单调函数,可记为 K ( || X – X c || ),当 X 远离 Xc 时函数取值很小。

径向基函数应用

径向基函数主要用于解决多变量差值问题,可通过多个径向基函数的和来逼近某个给定的数,这一逼近过程可被看作是简单的神经网络。

机器学习中,径向基函数还被用作支持向量机的核函数;神经网络结构中,可作为全连接层和 ReLU 层的主要函数。

常见的径向基函数

  • 高斯函数
  • 多二次函数
  • 逆二次函数
  • 逆多二次函数
  • 多重调和样条
  • 薄板样条

径向基函数适用条件

RBF 可根据大量数据点生成平滑表面,这些函数可为平缓变化的表面生成较好的结果,但表面值在短距离内出现剧烈变化,或样本值可能有测量误差或不确定性时不适用。

使用径向基函数作为激活函数的人工神经网络,又称为径向基函数网络 Radial basis function network 。

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供